000 | 01036nam a2200241Ia 4500 | ||
---|---|---|---|
008 | 250131s9999||||xx |||||||||||||| ||und|| | ||
022 | _a2040-5804 | ||
100 |
_aVillacis, Alexis H. _9124918 |
||
245 | 2 | _aA machine learning-based exploration of resilience and food security | |
260 | _bApplied Economic Perspectives and Policy | ||
260 | _c2024 | ||
300 | _a1479-1505 | ||
520 | _aLeveraging advancements in remote data collection and using the Food Insecurity Experience Scale (FIES) as a proxy measure of resilience, we show that machine learning models (such as Gradient Boosting Classifier, eXtreme Gradient Boosting, and Artificial | ||
650 |
_a Ethiopia _9124919 |
||
650 |
_a Food Insecurity Experience Scale _9124920 |
||
650 |
_a Malawi _9124921 |
||
650 |
_a Nigeria _9124922 |
||
650 |
_a Uganda _9124923 |
||
650 |
_aPredictive Performance _9124924 |
||
700 |
_a Badruddoza, Syed _9124925 |
||
700 |
_a Mishra, Ashok K. _9124926 |
||
856 | _uhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aepp.13475 | ||
999 |
_c134869 _d134869 |